
We represent an image X as a probability distribution q(Z|X) over a latent 
space. We measure symmetrised KL divergence between q for two images, 
which gives rise to our Perceptual Information Metric (PIM):

To train this representation unsupervisedly, we impose inductive biases 
using principles hypothesized about the human visual system:
• Efficient coding: brain compresses visual information
• Approximate translation and scale equivariance
• Slowness principle:
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What is a Perceptual Quality Metric?
Many vision tasks, like compression and denoising, require the assessment 
of subjective image quality for evaluation. Their success is measured in how 
similar the reconstructed image appears to human observers, compared to 
the often unobserved original image. Perceptual quality metrics output the 
perceptual distance between a distorted and a reference image, and can be 
used for such evaluation.

PIM: Perceptual Information Metric Results
Predictive performance on BAPPS and CLIC 2020

PIM beats previous state-of-the-art at predicting human ratings on 
BAPPS-JND and CLIC 2020 datasets, and is competitive on BAPPS-2AFC 
without supervised finetuning.

Each column shows equivalent amount of Gaussian noise to the corruption in the first row, according to the metric, for 
Shift corruption (left) and Fog corruption (right).

For a given metric, we computed the metric value between a reference and 
a corrupted ImageNet-C example and then found an equivalent amount of 
Gaussian noise to add to the reference that yields the same metric value. 
We find that traditional metrics like MS-SSIM are sensitive to geometric 
transformations like small pixel shifts, and the deep metric LPIPS is not 
sensitive to corruptions like fog (that classifiers should be invariant to). 
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The full encoder is a unit- 
variance multivariate Gaussian. 
The marginal encoders are 
mixtures of Gaussians, which 
allows us to learn expressive 
encoders, that in the limit of 
infinite mixtures can exactly 
marginalize the full encoder 
distribution p(z|x,y). 

Parameterizing encoder distributions

Qualitative comparisons via ImageNet-C

Invariance under pixel shifts

We shift the reference 
images in BAPPS by a few 
pixels, assume that human 
judgements of the modified 
pairs would be essentially 
unchanged and measure 
performance drop.

For slowness, we use adjacent frames from YouTube videos as X and Y, 
and train Z to capture information persistent between them.

Learning representations with inductive biases

www.scholarpedia.org/article/Slow_feature_analysis

Behaviourally relevant visual elements (right) are persistent across small 
time scales. Sensory signals, like retinal receptor responses (left), instead 
vary rapidly. Our brains extract the slow varying informative features from 
the quickly varying input signal.

The multi-scale decomposition and convolution components preserve 
approximate translation and scale equivariance.

Objective function: Efficient coding and Slowness

p(z|x,y) is the full encoder of X and Y, and q(z|x) and q(z|y) are variational 
approximations to the encoders of X and Y, which we call marginal encoders 
since they learn to marginalize out the missing conditioning variable. 

Maximizing a lower bound on I(Z; X,Y) encourages Z to encode information 
about X and Y, and minimizing upper bounds on I(X; Z|Y) and I(Y; Z|X), 
discourages Z from encoding information about X that is irrelevant for 
predicting Y, and vice versa. Our objective function is thus compressive and 
captures temporally persistent information. 

reference distorted difference image:

Some types of 
distortions are largely 
imperceptible.

PQMs quantify this.
LPIPS Alex-lin is finetuned on a part of BAPPS-2AFC; PIM 
neither uses classification labels nor human IQA ratings.


